Recursive Pizza



Tiled Pizza



Inner-blocking Pizza





Azzam Haidar ICL Friday talk, August 24, 2012

# Click to add title



ICL Friday talk, August 24, 2012

### General Overview: the linear algebra algorithms

### Two categories:

- 1. One sided algorithms
  - · Cholesky, QR decomposition, LU factorisation.

### 2. Two sided algorithms

Eigenvalue and Singular value problems.

Eigenvalues, eigenvectors and eigenspaces are the properties of a matrix.

- Eigendecomposition have their origin in physics
- Stress and strain problems
- Differential equations and quantum mechanics
- Weather forecast
- Electronics simulation
- Image processing
- Material chemistry
- Data storage
- Web analysis
- etc...



- $\triangleright$  Symmetric EVP  $Ax = \lambda x$ 
  - Tri-Diagonalization Reduction + solve + back transformation.
- $\triangleright$  Generalized EVP  $Ax = \lambda Bx$  or  $ABx = \lambda x$ 
  - Cholesky + Tri-Diagonalization Reduction + solve + back transformation.
- $\triangleright$  Singular Value Decomposition  $A = U\Sigma V^T$ 
  - Bi-Diagonalization Reduction + solve + back transformation.

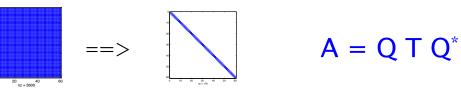


> Symmetric EVP  $Ax = \lambda x$  meaning compute  $A = Z \lambda Z^*$ where  $\lambda$  are the Eigenvalues and Z are the eigenvectors.

1. Tri-Diagonalization Reduction: transform A to nice form  $\ensuremath{\mathfrak{C}}$ 







$$A = Q T Q$$

- 2. Solve: compute the Eigenvalue and Eigenvectors of the tridiagonal  $T = E \lambda E^*$
- 3. Back transformation: update the computed Eigenvectors.

$$Z = Q * E$$

- 90% if only eigenvalues
- 50% if eigenvalues and eigenvectors

- $\triangleright$  Symmetric EVP  $Ax = \lambda x$ 
  - Tri-Diagonalization Reduction + solve + back transformation.
- $\triangleright$  Generalized EVP  $Ax = \lambda Bx$  or  $ABx = \lambda x$ 
  - Cholesky + Tri-Diagonalization Reduction + solve + back transformation.
- $\triangleright$  Singular Value Decomposition  $A = U\Sigma V^T$ 
  - Bi-Diagonalization Reduction + solve + back transformation.

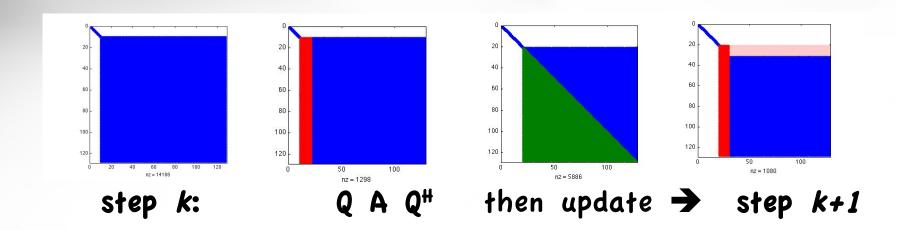


# There are two paths to tridiagonal form

- 1. The standard LAPACK algorithm.
- 2. A new technique based on multi-stage algorithm. Christian Bischof, Bruno Lang, Xiaobai Sun (94) proposed multiple-stage implementation called Successive Band Reductions to reduce a matrix to tridiagonal.



# The standard Tridiagonal reduction xSYTRD

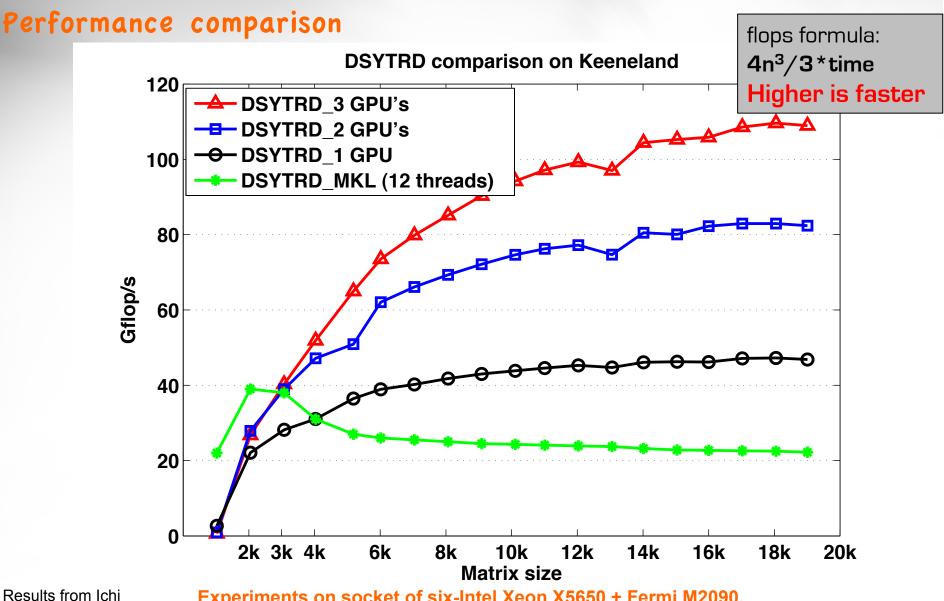


### \*Characteristics

- Too many Blas-2 op,
- · Relies on panel factorization,
- Total cost 4n³/3,
- → Bulk sync phases,
- → Memory bound algorithm.



# The MAGMA full reduction to tridiagonal





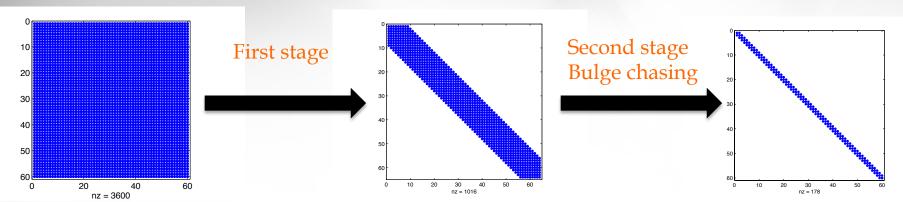
# The PLASMA reduction: 2 stage algorithm

### Idea:

- The idea is to cast expensive memory operations, occurring during the panel factorization into fast compute intensive ones.
- Redesign the algorithm in a new fashion which increase the cache reuse.
- Design new cache friendly kernels to overcomes the memory bound limitation.
- Extract parallelism and schedule task in an asynchronous order.



# The PLASMA reduction: 2 stage algorithm



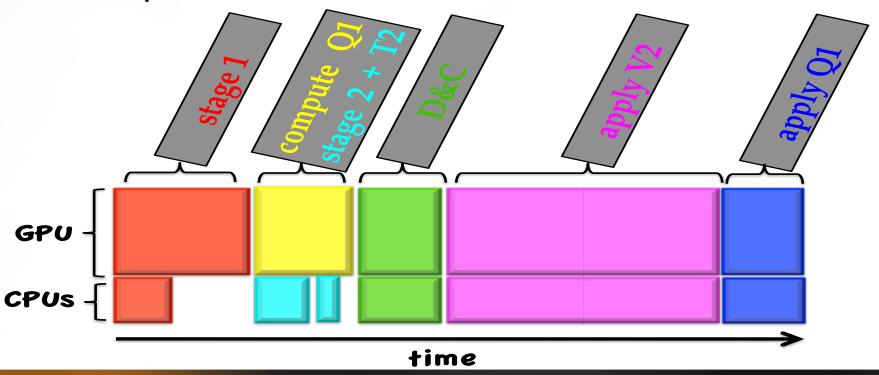
### \* Characteristics

- Stage 1:
  - BLAS-3,
  - one shot reduction,
  - asynchronous execution,
- Stage2:
  - BLAS-1.5,
  - element-wise/column-wise,
  - asynchronous execution,
  - · new cache friendly kernel.



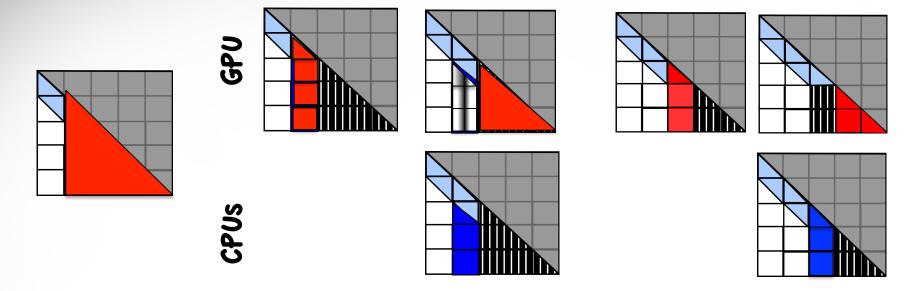
### Idea:

- Develop similar approach for hybrid architectures (CPU+GPU)
- The idea is to dump expensive operations into GPU and try to overlap with the CPU.

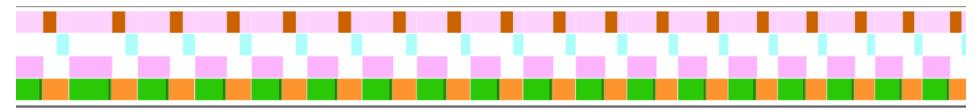




# The reduction:



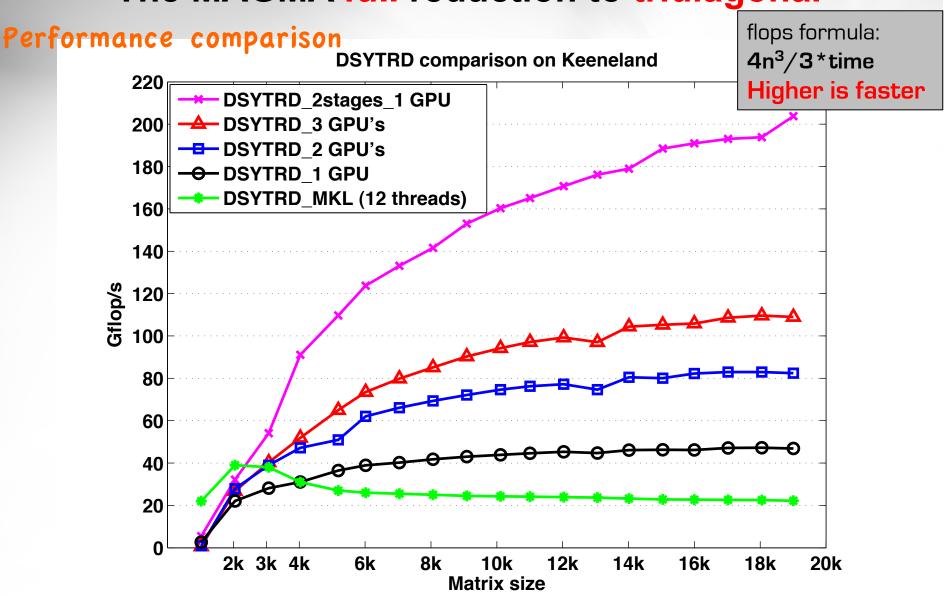
# The reduction:



courtesy from Mark Gates



# The MAGMA full reduction to tridiagonal





- 1. Symmetric EVP  $Ax = \lambda x$ 
  - Tri-Diagonalization Reduction + solve + back transformation.
- 2. Generalized EVP  $Ax = \lambda Bx$  or  $ABx = \lambda x$ 
  - Cholesky + Tri-Diagonalization Reduction + solve + back transformation.
- 3. Singular Value Decomposition  $A = U\Sigma V^T$ 
  - Bi-Diagonalization Reduction + solve + back transformation.



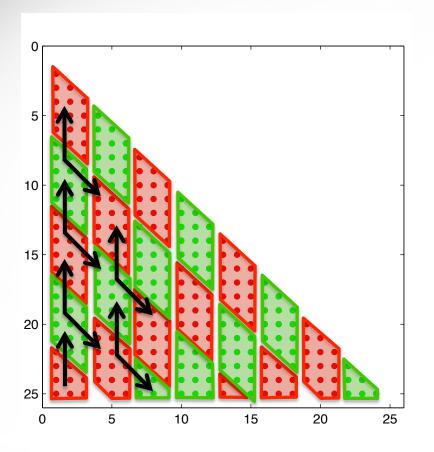
### \* Characteristics

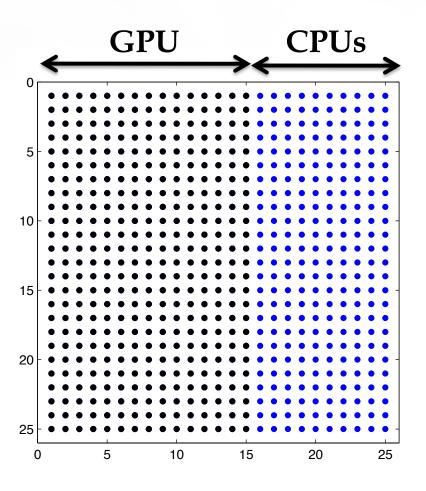
- Algorithm is more challenging, we will have 2 back transformations to apply,
- · Allow independent parallelism,
- Deal with different layout of storage,
- Requires new kernels to improve cache reuse,
- is 2n³ more expensive.



### Back transformation:

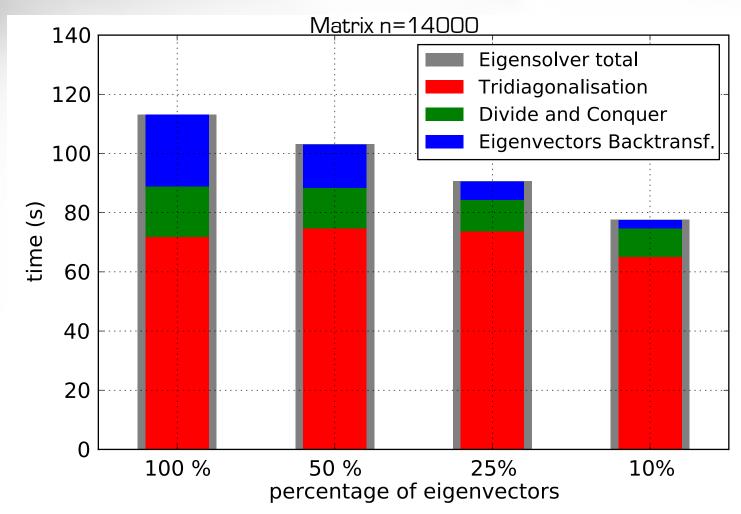
Allow CPUs to contribute





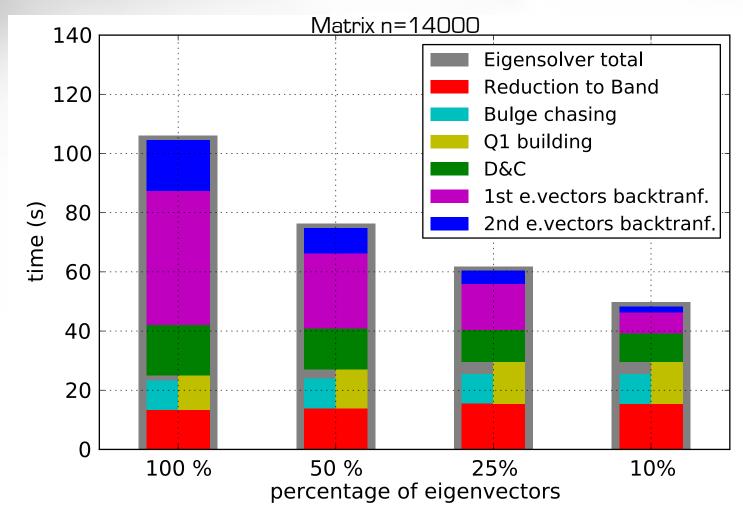


### Performance comparison





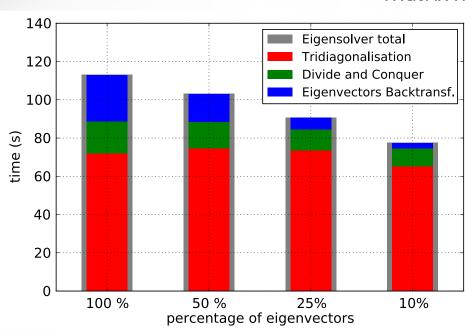
### Performance comparison

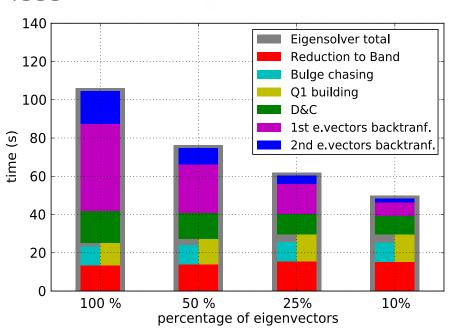




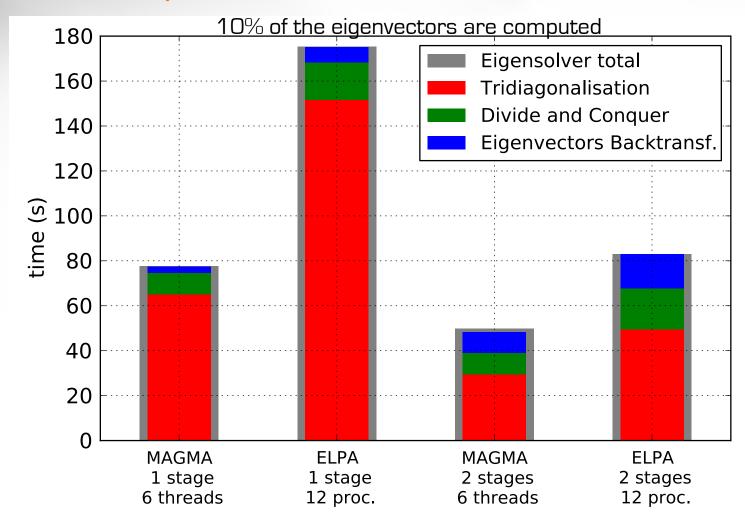
### Performance comparison

### Matrix n=14000





### Performance comparison





### **Future work**

- \* Road map and open questions:
  - Develop similar approach for SVD (ongoing integration).
  - Effort might be made on the eigensolvers.
  - Hessenberg, (Piotr, Hatem)
    - Bulge chasing
    - Gaussian reduction
    - Sign functions

### **Future work**

- \* Road map and open questions:
  - Developing a multi-GPU/multicore/ditributed version of the algorithm (ongoing).
  - Develop the tridiagonal reduction in the context of distributed memory architecture.
  - Evaluate a band divide and conquer for the band matrices.

# Thank you for your attention

